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Self-Introduction

Shengren ({RB#{F) Hou © o) ¢ermim)
Quantitative Power Trader @ OTC FLOW | PhD in Power System
and Al | Co-founder of Energy Quant Research Institution

Delft, South Holland, Netherlands - Contact info

1. Researcher (Power and financial market, Power System, Al)
2. Career (Quantitative Power Trader, Power market expert )
3. Entrepreneur (Energy Quant Research Institution)

4. Social activity (Board member of VCWI)
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Reinforcement Learning Introduction

]
TUDelf

Intelligent
Electrical
Power Grids

a Learning loop

| AlphaStar

2018

Actor

r—
—| | Environment
|

Measurements

¥

Control
policy

Control
Leamer —  polioy
Replay Y
buffer

A ]
Valtage commands
.

c

Simulated environment :‘1
¥

| Sensor Power

model supply

Terminate ‘ e 17
b l e J Forward
23 Grag-Shafranay
- e ‘ & solver (FGE)
e

Control policy

Neural net: MLP = 3 x 256
Outputs:a =19

d Deployment h Vessel cross section
@ Our architecture =\
m (=
- 2 |4 Isoflux line
Control -
Targets | t poiicy X-point
in vacuurn
Real-time Plasma
control =1 boundary
1 Conventional contrel Avata Veseel =]
P | — Axis R, 7
L psition
Ip, R, Z, shape| eorf
Taats Active
X-point | — Baifle
Offine Strike = Legs
feedlorward I “>s.... points
generation
. / L Limiter
a - 16Poloidal , Ohmic , Fast :
fleld colls colls " col

2022



Active distribution networks (ADNs) operation as a RL problem

&Agent(s) _Learnln_g by

interaction”

Action (a;)

\_ Reinforcement State (St)
& Learning (RL)

Agent (s) Reward (1)

Policy (m*(s;) » a;)

Controller Active Distribution
& Agent(s) (se,7e) System Environment

" (st)

| Load bus

@ PV goncration

Community ESS
%0

%
TUDelft B IEPG

RL solves a sequential problem that is formulated as a Markov Decision
Problem (MDP):

S: State space (Observed variables)
A: Action space (possible control actions)
< S, A, P, Y > P: Transition probability (Not available but simulated)
r: Reward function (Signal to maximize)
y: Discount factor (importance of future rewards)

Advantages of RL:
+ ltis a “model-free” approach to solve decision-making problems.

+ Excellent generalization features. Optimal actions for different states.
+  Complexity of the system (environment) can be high. Using powerful
parametrized function approximators for n(s, 8) (e.g. Deep Neural

Networks), we can find good and practical solutions.
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Experiment Design

DGs

Electnicity Flow

Diztmbuted Enerzy System Boundary

e s s e e e e e e e e e e e s e e e e e e e e e e e . ———————
=

Loads ESS |

r
[l
L]
i
]
L]
]
]
]
i
]
]
]
]
L]
1
]
1
i
]
1
L]
[
]
]
L]
]
]
]
]
I
]
L]
]
i
]
LS

SO Q,
w Hblﬁiﬂs ¢

Research Instltutlon

4 i
TUDelft |




Research Background: What is optimal energy system scheduling?
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Mathematical essence is to search for optimal solution for Sequential

decision problems within limited time window.
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Case Study: Energy System Optimal Scheduling
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(D)RL algorithms /ack of safety
guarantees, as they cannot (yet) be
directly imposed in the algorithm’s
formulation.
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“Performance Comparison of Deep RL Algorithms for Energy Systems Optimal Scheduling,” Hou Shengren, EdgaraMauricio Sa
Pedro P. Vergara, Peter Palensky, ISGT Europe 2022.



Our idea and experiments validation

Goal

Reinforcement learning algorithms that can provide theoretical proof of the constraint handling,
during the energy management operation.

Background
« providing such proof of RL algorithms can be difficult and may not always feasible.
» This is because the lack of mathematical tools and theories for RL algorithms

Motivation

» Classic model based approaches like MPC, MILP have well-established mathematics theories. We can
formulate the trained RL algorithm as a MIP, which can bring a stronger theoretical foundation for RL
algorithms.

* In this way, Various mathematical theories can be used for ensuring the feasibility of our algorithm, such
as duality theory, convex optimization, or polyhedral theory.
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Case Study: Energy System Optimal Scheduling

Understanding the (operational) constraints in the action space:
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The equality constraint defines the feasible action space (red
space, hyperplane) as a subspace of the action space (grey

space).
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Figure 2.4: Visualization of the constraint space whose boundaries are formed by the hyperplanes hj." (-) defined
by the ReLU activation functions derived from the deconstructed DNN (g(s,-) as a MIP formulation, for a
specific state s and actions a; and az. The grey are shows the increasing value (from darker to lighter) of VQg.
The red point exemplifies the optimal solution of max,¢ 4 Qp(s,-) if constraint a; + a» = d is disregarded. If
such a constraint is added to the MIP formulation, the solution represented with the blue point will be reached.
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Case Study: Energy System Optimal Scheduling

To strictly enforce the power input hidden
balance constraint: layer il

Deep neural networks +

ReLU
layer

hidden
layer

combinatorial optimization.
(MIP-DQN)
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integer linear optimization,” M. Fischetti and J. Jo, Constraints, vol. 23, 2018, pp. 296-309.
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Case Study: Energy System Optimal Scheduling
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During training, all tested algorithms seem to have similar convergence properties.

None of these algorithms are able to strictly enforce constraints, as expected. Nevertheless, the proposed MIP-DQN algorithm

showed the lower error.
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Case Study: Energy System Optimal Scheduling

Testing with unseen operational scenarios (uncertain PV and demand):
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Table 4: Performance comparison of different DRL algorithms in a new test set of 30 days.

Algorithms Error AP [MW] Computational time [s]

MIP-DQN 13.7+£0.3% 0.0
DDPG 47.3+1.9% 0.1410.021 43
TD3 31.5+0.7%  0.06+0.011 4.9
PPO 52.4+0.3%  0.1540.007 4.3

The MIP-DQN algorithm strictly meets the power balance
constraint. Other SoA algorithms fail to do so.

MIP-DQN algorithm achieves lower (average) errors when
compared with other DRL algorithms.
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Case Study: Energy System Optimal Scheduling

b
T S s s () i i The MIP-DQN algorithm was able to define similar hourly operational
- i schedule when compared with the optimal global solution.
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Background, Problem Defination, Thesis Objective
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Chapter 2: MIP-DQN Chapter 4: DF-SRL:
Algorithm: Ensure Power Leverage Domain .
Balance Constrains Knowledage to improve 1. Stay Curious
Problem formulation, MIP-DQN solution feasibility
algorithm design, Validation and Problem formulation, Safe layer : :
Validation and Analysis .
reward function
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Chapter 3: MIP-DRL Chapter 5: Safe Imitation
Framework: Safety Critical Learning: Safe and Efficient
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Chapter 6: Standardired, Customizable DN Environment Design
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Some Open-source package we developed

EV2Gym: A Realistic EV-V2G-Gym Simulator for EV

RL-AND: An environment for ESSs dispatch in
Smart Charging
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